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Objective: The objective of this work was to investigate if visuospatial
attention and working memory load interact at a central control resource
or at a task-specific, information processing resource during driving.

Background: In previous multitasking driving experiments, interactions
between different cognitive concepts (e.g., attention and working memory) have
been found. These interactions have been attributed to a central bottleneck or to
the so-called problem-state bottleneck, related to working memory usage.

Method: We developed two different cognitive models in the cog-
nitive architecture ACT-R, which implement the central vs. problem-state
bottleneck. The models performed a driving task, during which we varied
visuospatial attention and working memory load. We evaluated the model
by conducting an experiment with human participants and compared the
behavioral data to the model’s behavior.

Results: The problem-state-bottleneck model could account for de-
creased driving performance due to working memory load as well as increased
visuospatial attentional demands as compared to the central-bottleneck model,
which could not account for effects of increased working memory load.

Conclusion: The interaction between working memory and visuo-
spatial attention in our dual tasking experiment can be best characterized by
a bottleneck in the working memory. The model results suggest that as
working memory load becomes higher, drivers manage to perform fewer
control actions, which leads to decreasing driving performance.

Application: Predictions about the effect of different mental loads can
be used to quantify the contribution of each subtask allowing for precise
assessments of the current overall mental load, which automated driving
systems may adapt to.

Keywords: cognitive modeling, adaptive automation, human computer
interaction, mental workload, driver behavior

INTRODUCTION

Driving is one of the most complex tasks that
people do on a daily basis. In order to safely

navigate traffic, drivers must monitor in-vehicle
controls such as the speedometer or navigation
devices while also paying attention to the sur-
roundings and watching out for other road users
and pedestrians. Thus, it is unsurprising that an
estimated 94% of motor vehicle crashes can be
attributed to human error (Highway Traffic Safety
Administration & Department of Transportation,
2016). One of the main sources of human error
while driving is cognitive overload (e.g., Engström
et al., 2017), next to distraction (e.g., Hancock
et al., 2003) and fatigue (e.g., Gunzelmann et al.,
2011). However, the effect of cognitive workload
on driving is not straightforward and depends on
many factors such as the specific kind and amount
of workload as well as driving difficulty.

Cognitive Workload While Driving

Researchers investigating cognitive workload
during driving often focus on visual distractors that
impose additional workload on the drivers as it is
considered central to driving. Consequently, the
literature of the negative effects of extended visual
distraction on driving performance is compre-
hensive (e.g., Hancock et al., 2003; Horberry et al.,
2006; Ito et al., 2001; Li et al., 2018; Papantoniou
et al., 2017). However, even when secondary tasks
impose only minimal visual demands, driving
performance has been shown to suffer as well
(Alm & Nilsson, 1995; Jenness et al., 2002;
Tsimhoni et al., 2004) suggesting that driving
draws on multiple cognitive resources, which are
affected by cognitive distractions.

Similar to visual distractors drawing the eyes
away from the road, which exploit the limi-
tations of human sensing, cognitive distractors
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take away cognitive resources from the driving
task and interfere with the driving task at the
level of information processing. For example,
Strayer et al. (2015) induced high cognitive
workload by a variety of different factors such as
engaging in a conversation or operating
a speech-to-text system to reply to text mes-
sages. They found that higher mental demand of
the secondary task, as measured by NASA-TLX
ratings (Hart & Staveland, 1988), can be linked
to longer brake reaction times in a car-following
task as well as to worse scanning behavior for
hazard locations. Another study found lower
situational awareness and a higher number of
driving infractions (e.g., missing stop sign)
while engaging in a phone conversation while
driving (Kass et al., 2007).

Contrary to intuition, slightly increased levels
of cognitive workload can also improve driving
performance when the driving task is monoto-
nous (Nijboer et al., 2016). Nijboer and
colleagues (2016) attempted to reconcile these
results by proposing that cognitive workload
may have a preventative effect when mundane
driving situations might otherwise lead to mind-
wandering or fatigue, which have been associ-
ated with poor driving performance (e.g.,
Gunzelmann et al., 2011; Martens & Brouwer,
2013). Results showing that this effect dis-
appears when driving difficulty is varied provide
additional support for this explanation
(Engström et al., 2017; Medeiros-Ward et al.,
2014). While the beneficial effect of additional
load in monotonous driving situations can be
found using a variety of different secondary
tasks such as interactive verbal tasks (Atchley &
Chan, 2011), n-back tasks (Medeiros-Ward
et al., 2014), or simply repeating a sequence
of numbers in reverse order (He & McCarley,
2011) in lab studies, it is not as consistent in
naturalistic driving situations (Engström et al.,
2017).

The complexity of the interaction is further
highlighted by studies of Unni and colleagues
(2017) and Scheunemann and colleagues
(2019) who attempted to classify the cogni-
tive workload of drivers from fNIRS data in
a realistic driving simulator. The authors ma-
nipulated both visuospatial demands through
different lane width and working memory load

induced by a modified n-back task. Guided by
Wickens’ model of multiple resources
(Wickens, 2002), the authors predicted that
both tasks required a different set of cognitive
resources and expected little interference of one
task on the other. Following that line of rea-
soning, Unni and colleagues (2017) attempted
to classify the working memory load in-
dependent of visuospatial demands from the
recorded fNIRS data using multivariate re-
gression. They found high correlations between
the predicted workload and the induced
workload. However, when attempting to re-
versely classify visuospatial demands in-
dependent of working memory load levels,
Scheunemann and colleagues (2019) only
reached low classification accuracies. In a fol-
low-up analysis, the authors showed high
classification accuracy when the classification
was done for individual working memory load
levels (e.g., intermediate working memory
load) demonstrating brain-level interactions
between the two manipulated cognitive con-
cepts. Theories of multitasking can account for
this finding in different ways. The authors
posited as one option that the two tasks might
not be separated to different cognitive resources
and share a common resource specific to the
two tasks, which according to Wickens’ model
of multiple resources (Wickens, 2002) would
incur a significant cost of multitasking. Alter-
natively, the two tasks might interact at a task-
unspecific level instead. Both Wickens’ model
(at the central executive) as well as the often
observed effect of the psychological refractory
period (PRP) (Pashler, 1994; Welford, 1952)
similarly predict a performance loss when
multitasking due to a bottleneck at a central
resource (Levy et al., 2006).

The goal of this study was to identify the
mechanisms underlying the observed interaction
between visuospatial demands and working
memory load (Scheunemann et al., 2019). While
decoding models such as the one used by
Scheunemann and colleagues (2019) are useful
to indicate where task-relevant information
processing is located in the brain, these models
are limited when trying to explain the functional
mechanisms that drive task performance
(Kriegeskorte & Douglas, 2018). As an
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alternative, cognitive models are particularly
useful in this regard as they permit insight into
how people are performing a task. Cognitive
modeling is a widely established method to
understand human cognition and, moreover, to
create explainable computational models, which
can be used not only to evaluate hypotheses
about task strategies but also to determine how
each task depends on available cognitive re-
sources (Kriegeskorte & Douglas, 2018;
Newell, 1973).

To elucidate the effects of workload on
driving, we adapted the seminal driving model
by Salvucci (2006) designed in the Adaptive
Control of Thought—Rational (ACT-R;
Anderson, 2007) cognitive architecture. We
contrasted two different bottleneck models,
which have both been related to considerable
interference in multitasking situations: (1) A
central-bottleneck model, where interference is
due to competition for a central coordination
system (Pashler, 1994; Salvucci & Taatgen,
2008; Taatgen et al., 2009) and (2) a problem-
state-bottleneck model, where interference is
due to contention of a working memory resource
(Borst et al., 2010; Nijboer et al., 2016). To test
which of these models can better account for
cognitive interactions in driving, we conducted
an experiment in which two cognitive concepts
often utilized in driving situations were ma-
nipulated, working memory, and visuospatial
attention (Scheunemann et al., 2019; Unni et al.,
2017).

Modeling Approach

To investigate the interaction described by
Scheunemann et al. (2019), we developed two
cognitive models in the cognitive architecture
ACT-R. ACT-R is a psychological theory of
human cognition implemented as a computer
simulation (Anderson, 2007). It aims to in-
corporate the basic cognitive processes that
enable the human mind and can model cognitive
processes not as a single operation but as part of
a coherent system that produces all of human
behavior. It allows for the development of
cognitive models, which can be understood as an
implementation of a hypothesis of how humans

solve a particular task. ACT-R has been used to
develop one of the most well-known driving
models (Salvucci, 2006) and, furthermore, has
been used in previous studies to model visual
sampling on in-car displays (Kujala & Salvucci,
2015), and to simulate the effects of memory
rehearsal (Salvucci & Beltowska, 2008) and
phone dialing (Salvucci & Macuga, 2002) on
driving performance.

ACT-R simulates human cognition by a set of
modules and buffers, which are each specialized
to process a specific kind of information. How
available information is processed, is de-
termined by how the information is passed
through the modules of ACT-R, which com-
municate with each other via their respective
buffers and are coordinated by a central pro-
duction system (Figure 1). A production is
a specific action formulated as an if-then rule
that takes 50 ms to execute. For example, if the
visual module perceives a speed sign, then the
speed can be either stored in the problem state or
in declarative memory. Thus, cognitive pro-
cesses are expressed as a series of productions,
which each occupy a module for a certain
amount of time. Productions are executed by the
procedural module, which makes up the pro-
cedural knowledge of the model.

Next to the procedural module, other relevant
modules for driving are the declarative memory
module, the goal module and the problem state.
Declarative memory makes up long-term
knowledge of ACT-R and contains chunks of
information with slot-value pairs. Chunks can be
manually defined or learned by the model during
the experiment. Each chunk has a certain acti-
vation level that is based on the recency (i.e.,
when the chunk has last been processed) and
frequency (i.e., how often the chunk been pro-
cessed). The activation Bi of a chunk i contin-
uously decays following the equation

Bi ¼ ln

 Xn
j¼1

t�d
j

!
,

where n denotes the total number of pre-
sentations of chunk i, tj denotes the time since
the jth presentation of said chunk, and finally,
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d represents a decay parameter usually set to 0.5.
To successfully retrieve a chunk, the activation
has to be above the retrieval threshold, which is
set by the modeler. By clearing the buffer of any
module, the chunk currently in that buffer is
stored in declarative memory—thereby essen-
tially creating new memories.

The problem state holds the current in-
formation that is necessary to carry out the
task; it serves as a one-chunk working mem-
ory, reflecting the focus of attention in modern
working memory theories (Borst et al., 2010;
Nijboer et al., 2016). The goal module con-
tains the control information needed to per-
form the task. Thus in a real task, the goal
module would, for example, hold the goal
information that upcoming speed signs need to
be attended, the visual module would perceive
and attend speed signs, and the encoded speeds
would be stored in the problem state. Upon
entering the problem state, a retrieval to
a previous sign could be issued, for example,
to check if the new speed sign is the same as
the previous. If there is a chunk in declarative
memory above the retrieval threshold which
matches the description of the retrieval at-
tempt, the chunk would enter the declarative
memory buffer upon which it can be accessed
by other modules.

ACT-R is limited by the central processing
unit, which can only initiate one production at
a time. When the conditions for two productions

are met at the same time, only one of them can be
executed at once, resulting in a processing
bottleneck. At the same time, multiple processes
may run in parallel when separated to different
modules—for example, a memory retrieval can
be made while the model focuses on a speed
sign—but each module can only deal with one
instruction at a time (Byrne & Anderson, 2001).
This limited parallelism has strong implications
for multitasking, as it not only leads to a high
contention for the central processing unit, but
also implies that tasks that are reliant on different
modules can be performed more efficiently than
others.

On top of the inherent multitasking be-
havior of ACT-R, Salvucci and Taatgen
(2008, 2011) developed the multitasking
theory threaded cognition, which is integrated
into ACT-R. Threaded cognition specifies
further how available resources are used in
pursuit of multiple task goals. It allows the
model to interleave two or more tasks by using
a greedy and polite principle which dictates
that productions occupy modules as quickly
as possible but also release the modules as
soon as they are not needed. Production rules
will simply be executed based on the avail-
ability of modules and buffers independently
of their urgency. If two production rules of
different task goals can be executed, the
production of the least recently attended goal
will be selected. Since its inception, threaded

Figure 1. ACT-R cognitive architecture.
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cognition has been used successfully in a va-
riety of multitasking settings and has been
established as a sophisticated multitasking
theory that can account for a range of mul-
titasking behavior (e.g., Borst et al., 2010;
Kujala & Salvucci, 2015; Salvucci & Beltowska,
2008) and associated brain activity (e.g., Borst
et al., 2011; Borst et al., 2010; Nijboer et al.,
2014). Due to its management of multiple
resources, threaded cognition is often regarded
as a computational implementation of Wick-
ens’ model of multiple resources (Wickens,
2002).

Inspired by the work of Salvucci and
Beltowska (2008) who implemented a mem-
ory task while driving and matched the model
to human behavior, we developed two ACT-R
models. In the first model, we relied on the
inherent multitasking behavior of ACT-R,
which is limited by the serial initiation of
production rules and thereby modeled a bot-
tleneck at a task-unspecific resource (central
bottleneck), which is independent of the
specific tasks of the model. In the second
model, the multitasking behavior was char-
acterized by a dependency on the problem
state during multitasking and thereby im-
plemented a bottleneck at a task-specific re-
source (problem-state bottleneck). By
comparing the behavior of the two models, we
contrasted the two possible hypotheses posited
by Scheunemann et al. (2019). Both models
performed an experiment designed by Unni
et al. (2017). To allow for better validation of
the model, we collected new human data with
this experimental setup. Furthermore, we used
eye-tracking to assess cognitive workload of
the human participants.

METHOD

Participants

25 participants (12 male, 13 female) aged
between 20 and 37 years (mean = 26; SD = 4.1)
were recruited in the Oldenburg area, which was
a similar sample size as in previous studies (e.g.,
Unni et al., 2017). All participants were in
possession of a valid driver’s license in Germany
at the time of the experiment. They gave

informed consent prior to the experiment and
received 10€/hour as a reimbursement. This
research complied with the American Psycho-
logical Association Code of Ethics and this
experiment was approved by the Ethics Com-
mittee of the Carl von Ossietzky University
Oldenburg. The data of three participants had to
be excluded due to a technical error with the eye-
tracker. Average age of the included participants
was 26.2 (SD = 4.3).

MATERIALS

The driving experiment was programmed in
Java using the code framework of previous re-
search by Kujala and Salvucci (2015) and made
public at: https://www.cs.drexel.edu/~salvucci/
cog/act-r/download.php. It was conducted in the
behavioral lab of the Applied Neurocognitive
Psychology Laboratory at the University of
Oldenburg. It was run on a 1920x1080 px
monitor in a Microsoft Windows 10 environ-
ment in combination with a Logitech G20
wheel, which included a throttle and brake
pedal. Experimental data (e.g., car position)
were sampled with a rate of 200 Hz.

A Portable EyeLink Duo 2 (SR Research Ltd.,
Ottawa, Canada) eye-tracker was used to track
gaze position and pupil dilation with a sampling
rate of 500 Hz. For this set-up, we selected nine-
point calibration with mono-ocular tracking (left
eye) in remote tracking mode.

Design

The experiment used a within-subject design
which varied the factors visuospatial attention
and working memory load. Adapted from Unni
and colleagues (2017) and Scheunemann and
colleagues (2019), visuospatial attention re-
quirements were manipulated by either driving
on a highway with three lanes of 3.5 m each or
through a construction site with lanes of 2.5 m
each. In the construction site, the left-most lane
was blocked off by red-white pylons (Figure 2).
The participants were instructed to stay in the
middle of their current lane and drive on the
right-most lane that was not occupied by another
vehicle. In both conditions, the road was com-
pletely straight with no bends to either side.
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Working memory load was manipulated by
a modified n-back task. Participants were in-
structed to watch out for speed signs which
appeared on the right side of the road. The first
speed sign appeared 10 seconds in to the block,
subsequent signs appeared every 20 seconds
thereafter. The signs displayed a speed limit of
base 10 between 40 km/h and 120 km/h. Par-
ticipants were instructed to drive according to
the speed limit that was displayed n signs ago.
To keep to the task-compliant speed, participants
had to monitor the surrounding traffic on adja-
cent lanes and the available mirrors in order to
perform overtaking maneuvers which became
necessary ca. 2–3 times per block. Five different
n-back levels were used, ranging from 0-back
during which participants simply followed the
latest speed sign (i.e. regular driving) to 4-back
during which participants had to keep their
speed in accordance with the speed sign that they
saw four signs ago (Figure 3). To be able to
successfully perform this task, n speed signs
needed to be passed before the experimental
phase could start. This build-up phase of the
complete to-be-memorized sequence preceded
the experimental phase of each block and was
not analyzed.

Procedure

Upon arrival, participants were seated and the
eye-tracking equipment was calibrated. After-
ward, participants started with a 5-minute
training session, during which they performed
a 2-back task in the highway condition to get
used to the driving environment and vehicle
controls. If participants were not comfortable

with the controls after the training session or did
not understand the instructions of the n-back
task, we repeated the training session. Before
starting the experiment, we applied a drift cor-
rection of the eye-tracker and re-calibrated if
necessary.

The main experiment lasted ca. 70 minutes
with a break in the middle. Each block of the
experiment lasted exactly 160 s of experimental
phase in addition to the build-up phase (see
above). For the first half of the experiment the n-
back levels were each paired once with either
visuospatial condition such that visuospatial
condition altered between every block and no n-
back level would occur twice in a row. This set
of ten blocks was then repeated in reverse order
for the second half of the experiment resulting in
a total number of 20 blocks (following
Scheunemann et al., 2019; Unni et al., 2017).

Analysis

The build-up phase was excluded for all
analyses from both human and model data. One
block for one participant was additionally ex-
cluded due to disregarding the instructions,
which was indicated by the participant re-
maining stationary during the first minutes of the
block. Driving segments during which a lane-
change maneuver occurred were discarded.
These segments were defined by a 6 second
interval around a crossing of the lane markings
(Nijboer et al., 2016). To avoid classifying lane
keeping errors as lane-changes, only segments
during which participants drove for at least
5 seconds in the adjacent lane after crossing the
lane marking were considered as lane-changes.

Figure 2. Road conditions in the highway condition (left) and the construction
condition (right). The blue circle indicates the visual focus of the model (not visible to
participants).
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As a measurement for driving performance,
we calculated steering reversal rates which have
been indicated to increase with increased effort
in the driving task (Greenshields, 1963; Hicks &
Wierwille, 1979; Macdonald & Hoffmann,
1977; McLean & Hoffmann, 1975;
Scheunemann et al., 2019). Steering reversals
were defined as a crossing of the steering
wheel’s center position (i.e., going from left to
right or vice versa). Errors in the speed regu-
lation task were difficult and inefficient to
evaluate automatically as participants showed
vastly different acceleration patterns when en-
countering a speed sign. Thus, the trials were
each manually inspected and rated as incorrect
when participants failed to reach and maintain
the correct speed with a tolerance of ± 5 km/h on
average. In addition to steering reversals, we
also calculated the average lane deviation. Lane
deviation was defined as the mean of the ab-
solute distance to the center of the currently
occupied lane.

Before analyzing pupil dilation as an in-
dicator for cognitive workload (Kahneman &
Beatty, 1966), the data were pre-processed by
removing eye-blinks, which were identified by
the integrated blink detection provided by SR
Research. Other artifacts (e.g., due to temporary
eye-tracker failures) were identified as being
rapid changes in pupil sizes to values at least
four standard deviations away from the mean.
They were corrected by removing all samples
from 25 samples (50 ms) before until 25 samples
after the blink and replacing the samples by
monotonic cubic spline interpolation following
the recommendations of Mathôt and colleagues
(2018). Afterward, we calculated the percentage

change to a baseline period, which was de-
termined to be the time window of 5 seconds
after the start of the experiment and 5 seconds
before the occurrence of the first speed sign. The
baseline was calculated as the median pupil size
of the fixations during the baseline period
(Mathôt et al., 2018). Furthermore, we calcu-
lated the average percentage change for pupil
size of the fixations per unique combination of n-
back level and visuospatial condition. Fixations
were determined via the integrated software by
SR Research, which categorized a fixation as
a temporary spatially stable gaze direction.

For the analysis of gaze position, we clustered
the fixations with k-means clustering. We se-
lected the number of the clusters manually due to
the vast differences regarding participants’ use
of mirrors and determined the number for each
participant and visuospatial condition. The
number of clusters was deemed appropriate
when at least k�1 clusters could be assigned
a distinct location (e.g., three clusters: speed-
ometer, road, mirror) with one optional cluster
accounting for noise (see Figure 4 for a dem-
onstration of this method). Labels were assigned
manually. Afterward, we calculated the average
number of fixations on the speedometer in be-
tween two speed signs for each combination of
visuospatial and n-back combination.

Model

The model used in this study was a combi-
nation of a driving model and an n-back model.
The driving model was a modification of the
Salvucci driving model (Salvucci, 2006), which
is able to drive on an empty highway. However,

Figure 3. Example of an n-back block at the 90s mark. Bottom row displays the appropriate
speed at the car’s position depending on the n-back level.
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as the original model does not account for effects
of different lane widths, we adapted the model
for this study.

Driving Model

For lateral control, that is maintaining
a smooth trajectory in the center of the lane, we
implemented a system with a high-control and
a low-control loop. The high-control loop
closely resembles the model of (Salvucci, 2006),
which employs the two-point steering model
described by Salvucci and Gray (2004). The
model negotiates a new steering angle at every
iteration of the loop based on a near point and far
point at the lane center, which are 10 m and
100 m in front of the car, respectively.

The low-control loop follows a different
strategy that does not update the steering angle
until necessary and thereby models a more
passive control mechanism. Here, the model
maintains the same steering angle until the car
comes close to the edge of a lane. Once that
happens, the model switches back to the high-
control loop to safely move back to the center.

Both the minimal lateral distance to the lane
edge that triggers the high-control loop (dist)
and the time the model stays in the high-control
loop (thc) to move back to the center of the lane
are parameters which affect driving perfor-
mance. As more time in the high-control loop
equates to a tighter control of the steering re-
sulting in more steering corrections, the

parameters have been adjusted for a good fit of
the model’s steering behavior (see Appendix,
Table A1).

For longitudinal control, the model contin-
uously accelerates and decelerates to maintain
a fixed distance to a point moving at the target
speed. The control law of the model utilizes to
achieve this was based on the control law by,
Salvucci (2006)

ΔΦ ¼ kΔthw � Δthwþ kthw � thwΔt,
where Φ denotes an acceleration value ranging
from �1, which translates to maximally
pressing down the brake, to 1, which translates
to maximally pressing down the throttle and
ΔΦ denotes the difference between two ac-
celeration values between two iterations of the
driving loop. At the value of 0, neither throttle
nor brake are pressed down. thw describes the
time headway between the car and a fictional
point in the distance, which moved according
to the speed limit and Δthw the difference
between two iterations of the driving loop. In
other words, the distance from the car to the
distant point is defined as the distance an
object travels in the time interval Δt when
following the speed limit. Δt describes the time
difference between the last update of the
model and the current time t.

Additional adaptations of the model include
overtaking surrounding cars by changing the
near and far point to the adjacent lane (following
Salvucci, 2006) while using the side and rear-
view mirrors to monitor the cars in the adjacent
lanes and driving in the right-most lane when-
ever possible.

N-Back Model
The part of the model performing the

modified n-back task works via a sequential
recall mechanism. As soon as a speed sign
appears, it is encoded with an episodic tag as
a single chunk and released to the declarative
memory of ACT-R (Table 1). Episodic tags (ID
in Table 1) are necessary to avoid the merging
of speed signs that display the same speed at
different moments of the experiment as well as
to ensure that the speed signs are encoded in

Figure 4. Clustering of fixations shown on example
participant (Participant 5). Clusters 0, 1, 2, 4 can be
assigned to specific locations (upcoming road, speed-
ometer, rear-view mirror, and left lane, respectively).
Cluster no. 3 cannot be assigned to a location and ac-
counts for noise.
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the correct order. Additionally, the chunks
contain a slot with the episodic tag of the
previous speed sign (previousID in Table 1).
Thus, the encoding of the speed signs can be
described as a linked list going backwards in
time. To successfully recall a sign, the model
sequentially goes through the speed signs
starting at the most recent speed sign and
ending at the nth sign depending on the n-back
level of the current task. For each step going
backwards, the model initiates a retrieval re-
quest for a chunk carrying the episodic tag of
the previous sign. This episodic tag is stored in
a chunk in the problem state buffer. When the
chunk of the previous sign is retrieved from
memory, it replaces the chunk in the problem
state buffer causing the chunk of the current
sign to be released to declarative memory. As
rehearsal is a prominent strategy to accomplish
the n-back task in humans, the sequence of
task-relevant speed signs is rehearsed via the
same sequential mechanism, after successful
recall (Chooi & Logie, 2020).

Due to the limitations in multitasking in ACT-
R models, which reflect human limitations, the
number of rehearsals affected driving perfor-
mance, because the steering updates compete
with the initiation of productions of the re-
hearsal. As a consequence, we adjusted the
number of rehearsals (analogous to Salvucci &
Taatgen, 2011, Chapter 4) for a good model fit of
the participants behavior (see Table A1 in
Appendix).

It seems unlikely that speed signs were
completely forgotten. Therefore, the retrieval
threshold rt was set to a low value. Errors are
modeled by partial matching, which can be
thought of as mixing up two signs (Lebiere,
1999). How easily a chunk can be erroneously
retrieved instead of the matching chunk is
determined by the similarity between the two

chunks. The similarity was chosen to be lin-
early decreasing with the time difference when
two speed signs appeared. For example, two
consecutive speed signs are more similar than
two speed signs with a 1 minute time differ-
ence in between. Similarity ranged from
0 meaning that two chunks encoded the same
speed sign and decreased by �0.1 for each
speed sign that occurred in between (Table 2).
The experiment and the two driving models
below are available under: https://github.com/
ANCPLabOldenburg/.

Multitasking

Multitasking was modeled by employing two
goals (driving and the n-back task), which are
continuously interleaved using threaded cogni-
tion (Salvucci & Taatgen, 2008). Salvucci and
Beltowska (2008) identified a bottleneck at the
central processing unit of ACT-R when two
tasks are being performed simultaneously,
which negatively affected driving performance.
In the central-bottleneck model, we did not
explicitly model an interaction between the
driving part of the model and the n-back part of
the model. Instead, following the work of
Salvucci and Beltowska (2008), the model is
based on the competition for the processing unit
of ACT-R. Because only one production rule can
be initiated at any one time and its execution
takes 50 ms, it can cause delays in either task
when multiple production rules have their
conditions met at the same time. For example, in
Figure 5, purple arrows indicate when pro-
ductions can be initiated for both the driving task
and n-back task as all resources are available. As
the production rule of the least recently attended
goal gets initiated first, this delays the pro-
ductions of the other task (purple dashed lines in
Figure 5), which in the case of driving can result
in fewer steering updates, when n-back pro-
ductions are initiated first (Anderson et al.,
2005).

In the problem-state-bottleneck model, we
used the same driving and n-back mechanisms
as in the central-bottleneck model. However,
we made the multitasking requirement stron-
ger by introducing a dependency on working
memory (i.e. the problem state) into the

TABLE 1: Example of a memory chunk

Slot Value

Isa nback
ID 80
previousID 60
Speed limit 70
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driving task. In concrete terms, this meant that
each iteration of the high- or low-control loop,
which starts with a so-called “attend-near”-
production, could only be initiated when the
problem state was not busy (green arrow in
Figure 5 indicates the delay). As a consequence,
no new steering actions are initiated while
working memory is actively used. As the se-
quential recall of speed signs for the n-back task
requires constant swapping of the contents of the
problem state buffer, it will remain active for
longer periods during the task (i.e., 200 ms after
each recall). This mechanism results in significant
delays regarding the initiation of the driving loop
as it falls more often together with a swap of the
content of the problem state (green dashed lines
in Figure 5. Note that, as the bottleneck in the
central processing unit is an inherent feature of
the multitasking behavior of ACT-R, it was also
part of the problem-state-bottleneck model. We
re-fit the driving parameters (see Table A1 in
Appendix) to ensure that delayed control oper-
ations due to the restrictions in multitasking did
not cause the model to lose control of the vehicle.

RESULTS

Driving Performance

In line with previous studies, for human drivers
we hypothesized an effect of working memory
load (n-back level) and driving difficulty (narrow
vs. wide lane) on driving behavior measured by
steering reversal rate (SRR) and lane deviation (De
Waard & Brookhuis, 1996). Figure 6 shows the
significant decrease in SRRs in human participants
that we observed across all n-back levels
ðFð4; 84Þ ¼ 38:4, p< 0:001, η2p ¼ 0:65Þ as well
as a significant increase in SRRs in the con-
struction condition compared to the highway con-
dition ðFð1; 21Þ ¼ 16:3, p < 0:001, η2p ¼ 0:44Þ,
which was supported by a two-factor repeated

measures analysis of variance (ANOVA) with the
factors n-back level and lane width. There was no
interaction effect ðFð4, 84Þ ¼ 1:5, p ¼ 0:22,
η2p ¼ 0:07Þ.

Table 3 shows the “cost” of the two bottle-
necks as the average sum of all production delays
in between two speed signs due to the respective
bottlenecks. As the n-back level increases, the
cost increases for both bottlenecks. However, as
the central-bottleneck is solely impacted by the
increased competition for the procedural mem-
ory, it shows a lower increase and a lower total
cost when compared to the problem-state bot-
tleneck. Importantly, the problem-state-
bottleneck model is impacted by both bottle-
necks whereas the central-bottleneck model is
merely restricted by the central bottleneck.

The problem-state-bottleneck model pre-
dicted both significant effects regarding n-back
level and lane width, and matched the human
data closely. This shows that, with respect to
SRR prediction, the problem-state-bottleneck
model (triangles in Figure 6) can clearly ac-
count for both effects. We calculated the root
mean square error (RMSE) (Chai & Draxler,
2014) and the determination coefficient R2 to
formally evaluate the models and calculated an
RMSE = 0.08 and an R2 = 0.77 for the problem-
state-bottleneck model (see Table 4). However,
the central-bottleneck model (circles in Figure
6), while steering slightly more often in the
construction condition and thereby reflecting the
human behavior, 1) underestimated this effect
and—more importantly—2) was not able to
capture the effect of decreasing SRRs across n-
back levels (RMSE = 0.11, R2 = 0.31).

Analysis of lane deviation (Figure 7) showed
that human participants deviated more from the
lane center in the highway condition than in the
construction condition ðFð1; 21Þ ¼ 81:2,
p < 0:001, η2p ¼ 0:79Þ. Although there was no
main effect of n-back difficulty ðFð4, 84Þ¼0:19,

TABLE 2: Similarity of speed signs appearing at different times to the exemplary chunk in Table 1, which
appeared at 80 seconds

Time 20 40 60 80 100 120 140 160 …

Similarity �0.3 �0.2 �0.1 0 �0.1 �0.2 �0.3 �0.4 …
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p¼0:94,η2p¼0:01Þ, the two-factor repeated mea-
sures ANOVA revealed a significant interaction
effect ðFð1; 21Þ ¼ 3:3, p ¼ 0:0156, η2p ¼ 0:13Þ,
where the difference between highway and
construction increased with increasing n-back
level. This interaction seems to be mostly
carried by a lane deviation increase in the wide
road condition at the highest n-back level. The
problem-state-bottleneck model (triangles in
Figure 7) predicts an effect of lane width on
lane deviation as the model deviates more from
the lane center in the highway condition. While
predicting an increase of lane deviation across
n-back levels in the construction condition,
which is not present in the human data, the
problem-state-bottleneck model predicts the
effect of lane width closely with regard to
human behavior (RMSE = 0.15, R2 = 0.14). In
contrast, the central-bottleneck model (circles
in Figure 7) shows no effect of n-back level, but
overestimates the effect of lane width on lane

deviationwhile still underestimating the total lane
deviation (RMSE = 0.22, R2 = 0.92). Although,
the model results do not favor the problem-state-
bottleneck model as clearly, we argue that it
shows a slightly better fit as the effect of lane
width reflects human behavior while the central-
bottleneck model does not capture the effects of
either condition well.

Eye-Tracking Results

Before analyzing the performance in the n-
back task, we assessed the task demand induced
by the different levels of the task to validate the
inducedworkingmemory load. Previous research
has found increased pupil size as the contents in
working memory increase suggesting that pupil
size can be used as an indicator for working
memory load (Kahneman & Beatty, 1966). Ac-
cordingly, analysis of the eye-tracking data re-
vealed a significant increase in pupil size with
respect to the baseline with increasing n-back
difficulty ðFð4;21Þ¼ 4:5,p¼ 0:002,η2p ¼ 0:18Þ
calculated by a 2-way repeated measures
ANOVA. There was no interaction effect
ðFð4; 21Þ ¼ 0:69, p ¼ 0:6, η2p ¼ 0:03Þ and no
difference could be found between driving con-
ditions ðFð1; 21Þ ¼ 0:83, p ¼ 0:37, η2p ¼ 0:04Þ
(Figure 8). Furthermore, we analyzed the ob-
served number of fixations on the speedometer
in between two speed signs to assess how often
participants monitored their speed to keep to
the task-compliant speed. The data show a de-
crease with increasing n-back level ðFð4; 21Þ ¼
12:7, p< 0:001, η2p ¼ 0:38Þ (Figure 9). While
the participants seemed to show a numerically
higher number of fixations on the speedometer

Figure 5. Demonstration of the two different bottlenecks. The two goals, WM (working
memory) and drive, are initiated by the procedural module.

Figure 6. Average steering reversal rates. Error bars
indicate the standard errors of the mean.
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in the construction condition compared to the
highway condition, the difference was not sig-
nificant according to a 2-way repeated measures
ANOVA ðFð1;21Þ¼ 1:3,p¼ 0:26,η2p ¼ 0:06Þ
and there was no interaction effect ðFð4, 84Þ ¼
0:71, p ¼ 0:58, η2p ¼ 0:03Þ.

N-Back Performance

As illustrated in Figure 10, participants made
significantly more errors in the speed regulation

task as n-back difficulty increased, which was re-
vealed by a two-factor repeated measures ANOVA
ðFð4;84Þ¼ 30:35, p < 0:001, η2p ¼ 0:59Þ. How-
ever, no significant differences in speed errors
between lane widths ðFð1; 21Þ ¼ 0:03, p ¼
0:85, η2p < 0:01Þ or interaction effects between
n-back and lane width were observed ðFð4; 84Þ ¼
0:18, p ¼ 0:95, η2p < 0:01Þ.

In addition to the matching effect in the
driving performance, both the central-bottleneck
model (RMSE = 0.08, R2 = 0.95) as well as the
problem-state-bottleneck model (RMSE = 0.07,
R2 = 0.83) mirror the effect of n-back difficulty on
the performance in the speed regulation task with
respect to human participants: as n-back difficulty
increases, the model performed worse in the n-
back task. However, the models overestimated
this effect for higher n-back difficulties and made
more errors than human participants. There is no
effect of visuospatial demands on n-back per-
formance in the models. As both models exhibit
similar behavior regarding n-back performance,
they represent human behavior equally well.

DISCUSSION

In this study, we investigated whether a bot-
tleneck at a task-specific resource or a bottleneck
at a task-unspecific resource could better ac-
count for interactions between working memory
and visuospatial attention during driving.
Scheunemann et al. (2019) proposed that the
interactions could be due to a common resource
at a task-specific level that needed to be accessed
by both tasks (e.g., working memory) or due to
a common resource, which is independent of the
tasks (e.g., the central executive in Wickens’
model (Wickens, 2002)). We contrasted the two
hypotheses by developing two cognitive models

Figure 7. Average lane deviation. Error bars indicate the
standard errors of the mean.

TABLE 4: Formal model fit metrics

RMSE R2

SRR (central) 0.11 0.31
SRR (problem state) 0.08 0.77
Lane deviation (central) 0.22 0.92
Lane deviation (problem state) 0.15 0.14
Errors (central 0.08 0.95
Errors (problem state) 0.07 0.83

TABLE 3: Cost of the two bottlenecks

Problem-State Bottleneck Central Bottleneck

N-back Construction Highway Construction Highway
0-back 0.006 0.009 0.151 0.160
1-back 0.345 0.272 0.526 0.543
2-back 0.518 0.515 0.664 0.682
3-back 2.205 1.865 0.835 0.841
4-back 4.941 4.406 0.971 0.995
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implementing these hypotheses. The central-
bottleneck model is restricted by a bottleneck at
a task-unspecific resource. The problem-state-
bottleneck model implements a bottleneck at
a task-specific resource (i.e., the problem state).
We evaluated the behavior of the models by
comparing their behavior to data collected in
a dual tasking driving experiment. Our study
showed that the effect of working memory on
driving performance cannot be adequately cate-
gorized by a contention at a task-unspecific re-
source like the central processing unit, due to the
relatively poor fit of the central-bottleneck model
to human data with regard to driving

performance. Instead, the models suggest an
interaction at a common, task-dependent resource
like the problem state, representing working
memory usage, which is indicated by the
problem-state-bottleneck model accounting for
human driving behavior across both working
memory load and lane width.

Regarding steering behavior, both models
showed increased SRRs in the construction
condition, which is in line with the behavior of
human participants in the current study as well as
with previous research that showed that SRRs
increase with the task demand as long as the task
is within capacity of the mental resources
(Greenshields, 1963; Macdonald & Hoffmann,
1980; Mclean & Hoffmann, 1973;
Scheunemann et al., 2019). However, these
findings are highly dependent on the exact na-
ture of the task, as reduced SRRs have also been
shownwhen drivers performed a secondary task,
while driving difficulty remained constant
(Macdonald & Hoffmann, 1977). Macdonald
and Hoffmann (1980) suggested that steering
reversals increase with additional effort being
put towards the driving task, which increases as
the task demand in the driving task rises.
However, when a secondary task exceeds the
maximum mental capacity, mental resources
(e.g., attention) are divided and are then drawn
away from the driving task. Consequently, the
effort being put into the driving task decreases,
which results in a lower number of steering
reversals. This effect is nicely demonstrated by
the two models. In both models, steering control
is modeled by the implementation of two control
loops: high control vs. low control. The low-
control loop does not update the steering posi-
tion via the near and far point but merely checks
whether the car is in an unsafe position in the
lane and thereby models driving with low effort.
In the construction condition the model remains
in the low-control state for less time as high
control is initiated when the model approaches
the lane edges, which are closer to the car if the
lane is narrower. This mechanism reflects the
hypothesized behavior of human participants
that driving in a construction site requires more
effort and, thus, more resources.

However, while mirroring human behavior
across lane widths, the central-bottleneck model

Figure 8. Percentage change to baseline of the pupil size
across n-back levels. Error bars indicate the standard
errors of the mean. The baseline pupil size was larger
than the average pupil size leading to negative values on
the y-axis.

Figure 9. Number of fixations on the speedometer in
between two consecutive speed signs. Error bars indicate
the standard errors of the mean.
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falls short in predicting human behavior as it
cannot account for the decrease in SRRs over
increasing n-back levels. In contrast, the
problem-state-bottleneck model implies that the
problem state is needed even for a well-practiced
control task such as driving and, therefore, pre-
dicts a decrease in steering operations over n-
back levels. From human pupil data, we can
conclude that the task demand increases with n-
back level because we observed an increase in
pupil size indicating higher workload. This is also
reflected by human participants committing more
errors across n-back levels as more speed signs
have to be stored in working memory for longer
periods of time. Furthermore, we observed that
participants showed a decreasing number of
fixations on the speedometer as the n-back dif-
ficulty increased. This further indicates that
participants have less time available to invest in
monitoring the car’s speed due to the increasing
task demand of the n-back task. Thus, it can be
argued that with increasing difficulty in the n-
back task, the task draws away more resources
from the driving task resulting in less time spent
on the driving task in human participants.

The two models can account for this behavior
in two ways via the different bottlenecks and their
respective costs. In the central-bottleneck model,
the competition for initiating production rules
increases with increasing n-back level as higher n-
back levels initiate more productions to recall
speed signs further back in time. However, the cost
of the central bottleneck is relatively low overall,
leading to a low effect on steering reversal rates. In

the problem-state-bottleneck model, driving is
dependent on the problem state meaning that more
resources between the two tasks are shared.
Consequently, fewer processes can be executed in
parallel and the n-back task draws awaymore time
from the driving task when the n-back level in-
creases resulting in fewer steering reversals across
n-back levels in the problem-state-bottleneck
model. This higher cost of the bottleneck is evi-
dent when comparing the total delay of steering
updates caused by the problem-state bottleneck as
n-back levels increase. This explanation is in line
with threaded cognition, which claims that both
tasks share the mental resources and an increased
effort in the working memory task draws away
resources from the driving task resulting in less
time spent overall on steering control. According
to this theory, the addition of a secondary task will
result in fewer steering reversals as the central
processing unit acts as a bottleneck for any two
tasks that are performed simultaneously.

Lane deviation in human participants showed
a similar pattern as observed in previous studies,
with lane deviation decreasing in narrower lanes
(De Waard et al., 1995; Dijksterhuis et al., 2011;
Godley et al., 2004). However, no clear pattern
emerged across working memory load levels.
Previously, lane deviation has shown to decrease
with increasing workingmemory load (Brookhuis
et al., 1991; He et al., 2014), although Unni et al.
(2017) reported no changes across n-back levels
using the same experimental design as we did.
Both models in our study capture the effect of
increased lane deviation in the highway condition.
In addition, the problem-state-bottleneck model
also predicted an effect of increased lane deviation
across n-back levels in the construction condition,
which is not present in the human data. The effect
between road conditions in the models is due to
the increased time in the low-control loop in the
highway condition, which does not adjust the
steering to move back to the center until a critical
distance to the lane edge has been reached. With
regards to the effect of working memory load, the
increased time spent on the n-back task leads to
less time in the high-control loop, which further
increases lane deviation, similarly to steering
reversals. Similarly, as the driving productions
cannot be initiated while the problem state is
occupied, which leads to fewer steering

Figure 10. Errors in the speed regulation task (n-back
task). Error bars indicate the standard errors of the mean.
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productions, lane deviation is higher in the
problem-state-bottleneck model when compared
to the central-bottleneck model. This effect pri-
marily affects the construction condition as the
contention for resources is stronger in this con-
dition. As themodel spendsmore time in the high-
control loop, the effect of the working memory
task, which restricts time in the driving loop,
becomes stronger.

Interestingly, neither the models nor the
steering behavior of the human participants
showed an interaction between the two ma-
nipulated concepts suggesting that the found
interactions by Scheunemann et al. (2019) are
exclusively present at the brain level, but not at
the behavioral level.

Overall, the problem-state-bottleneck model
captured human steering behavior across differ-
ent task conditions and could account for dif-
ferent kinds of induced workload. In the future,
well-tuned cognitive models that predict human
behavior in different driving situations could
support human-machine integration as proxies
for humans in automated vehicles. Automated
vehicle approaches, like “adaptive automation”
(Hancock et al., 2013), could especially benefit in
this regard as they attempt to adjust the level of
automation in the vehicle to the operator’s mental
load. The authors envision a system that monitors
the driver’s cognitive state measured by brain
activity or physiological sensors to determine
periods of high cognitive workload. In these sit-
uations, the envisioned system could intervene to
alleviate the driver’s cognitive workload. The
objective in this endeavor is for the driver to re-
main attentive and actively engaged in the driving
task but re-adjust the driving responsibilities when
the driver’s safe handling of the situation cannot be
guaranteed or when the automated system is
failing. In an ideal system, the driving task should
be optimized such that the driving responsibilities
are matched to the general and momentary ca-
pabilities of the individual driver. Although such
a system does not yet exist, the idea has been
evaluated before using brain measurements to
classify frustration in human drivers, which
showed significant safety gains (Damm et al.,
2019). While this research is promising, it is
currently unclear how much mental workload is
induced by the task demands that are part of

everyday driving leading to high uncertainties in
the classification of the human state. Conse-
quently, which driving responsibilities should be
automated, which should be performed by the
human and what the mode of intervention needs to
look like remains largely unspecified to this date.

A crucial step toward effective adaptive au-
tomation is to be able to accurately assess cog-
nitive workload while driving, in order to know
when the system should adapt the driving re-
sponsibilities assigned to the human operator.
While predicting cognitive workload can poten-
tially be done using physiological measures like
heartrate variability or pupillary response
(Kahneman & Beatty, 1966) and even neurosci-
entific methods like electroencephalography
(EEG; e.g., Aricò et al., 2016; Scerbo et al., 2003)
or functional near infrared spectroscopy (fNRIS;
e.g., Bunce et al., 2011; Unni et al., 2017), these
methods are limited because overall workload is
driven by multiple external factors which interact
at the brain level. Interactions between different
factors have the potential to considerably de-
teriorate the accuracy of the system as was evi-
denced by Scheunemann et al. (2019) constituting
a real challenge in brain-based adaptive auto-
mation technologies.

Herein lies the great potential of using ex-
plainable computational models as showcased in
this work. The model we present here provides
not only behavioral predictions during multi-
factorial driving but it can also be used to dis-
ambiguate how different factors contribute to
a degradation of driving performance, for ex-
ample, by a bottleneck in working memory. As
such, it can be used to infer modes of intervention,
which alleviate the mental load of the driver by
eliminating crucial points of failure in cognitive
processing. Furthermore, since cognitive models
are inherently explainable in their predictions,
they potentially transfer well to hitherto unseen
situations, which can be helpful to constrain the
output of conventional black-box models used in
previous work (Damm et al., 2019). For example,
in a stressful highway situation, which might
potentially overload the driver, the ACT-R model
could be used to identify concrete assistance to the
driver such as increased steering automation or
highlighting information that might otherwise be
stored in working memory.
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Limitations

An important point to mention is the over-
estimation of the steering reversal rates by the
problem-state-bottleneck model in the 0-back task
(Figure 6), which represents normal driving
conditions. To understand why this happens, we
repeat that in the 0-back, similarly to higher n-back
levels, the chunk that encodes the target speed is
transferred from the visual buffer to the problem
state buffer after a speed sign is encountered.
However, we categorized the target speed as
control information in the problem-state-
bottleneck model meaning that it was eventually
stored in the goal buffer. This means that once the
information is recalled and stored in the goal
buffer, there is no need to retain the information in
the problem state and it can be instantly released
causing the problem state to be free. With regards
to the multitasking behavior of the problem-state-
bottleneck model, this means that the bottleneck at
the problem state is limited to the recall phase but
not the rehearsal phase in the 0-back task, elim-
inating a large part of the interaction between the
two tasks. This shortcoming of the model should
be addressed in future models possibly by ex-
tending the model to involve a tighter control of
the currently followed speed, which would impact
the problem state in the ACT-R model. As per-
forming the 0-back task likely requires working
memory usage in human participants, evidenced
by the non-zero error rate for this task condition, it
is reasonable to include such a control mechanism
in a future model. With steering control being
dependent on the availability of the problem state,
we estimate that this may show decreased driving
performance in the model. However, as this was
not the primary focus of this work, implementing
and validating such amechanismwas out of scope.

CONCLUSION

In this paper, we provided explainable pre-
dictions with regards to the interactions between
visuospatial attention and working memory load
during driving. These predictions could be used by
future automation systems to disambiguate the
effect of different external mental loads to evaluate
when drivers are in need of assistive technologies.
Further studies could attempt to predict brain

activation to quantify the contribution of each
subtask to overall workload on the brain level.
Ultimately, this could lead to reducing mental load
as a risk factor for driving and thereby to signif-
icant safety improvements in everyday traffic.

KEY POINTS

· Interactions between visuospatial attention and
working memory load can be accurately modeled
by a bottleneck at the problem state resource in
ACT-R.

· A central bottleneck, which is independent of the
specific tasks, does not reflect the impact of
working memory load on driving performance.

· Drivers can perform fewer control actions with
increased working memory load resulting in de-
creased steering performance.

· Interactions between visuospatial attention and
working memory load do not show at the behav-
ioral level.

APPENDIX

TABLE A1: Model Parameters

Parameter Central Problem State

Rt �100 �100
Mp 19 24
Ans 0.4 0.5
Lf 1.0 0.3
Dist 0.7 0.75
Thc 3 3
Scale 0.6 0.925
kthw 16 16 � scale
kΔthw 4 4 � scale
kfar 0 0
knear 3 3
Θnmax 0.07 0.03

The middle column displays the values that have been
selected for the central-bottleneck model, whereas the
right column displays values that have been fit for the
problem-state-bottleneck model. The top four values are
ACT-R memory parameters and determine the accuracy
(rt,mp, ans) and the speed (lf) of items being recalled. The
bottom parameters are general driving (dist, thc) and
steering parameters (scale, kthw, kΔthw, kfar, knear, Θnmax)
that constrain the lateral and longitudinal control
functions.
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